Separated Continuous Conic Programming: Strong Duality and an Approximation Algorithm

نویسندگان

  • Xiaoqing Wang
  • Shuzhong Zhang
  • David D. Yao
چکیده

Motivated by recent applications in robust optimization and in sign-constrained linearquadratic control, we study in this paper a new class of optimization problems called separated continuous conic programming (SCCP). Focusing on a symmetric primal-dual pair, we develop a strong duality theory for the SCCP. Our idea is to use discretization to connect the SCCP and its dual to two ordinary conic programs. We show if the latter are strongly feasible and with finite optimal values, a condition that is readily verifiable, then the strong duality holds for the SCCP. This approach also leads to a polynomial-time approximation algorithm that solves the SCCP to any required accuracy.

منابع مشابه

WEAK AND STRONG DUALITY THEOREMS FOR FUZZY CONIC OPTIMIZATION PROBLEMS

The objective of this paper is to deal with the fuzzy conic program- ming problems. The aim here is to derive weak and strong duality theorems for a general fuzzy conic programming. Toward this end, The convexity-like concept of fuzzy mappings is introduced and then a speci c ordering cone is established based on the parameterized representation of fuzzy numbers. Un- der this setting, duality t...

متن کامل

Benson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality

‎In this paper‎, ‎we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints‎. ‎We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions‎. ‎We also fo...

متن کامل

Strong Dual for Conic Mixed-Integer Programs∗

Mixed-integer conic programming is a generalization of mixed-integer linear programming. In this paper, we present an extension of the duality theory for mixed-integer linear programming (see [4], [11]) to the case of mixed-integer conic programming. In particular, we construct a subadditive dual for mixed-integer conic programming problems. Under a simple condition on the primal problem, we ar...

متن کامل

Weak and Strong Duality Theorems for Fuzzy Conic Optimization Problems

The objective of this paper is to deal with the fuzzy conic programming problems. The aim here is to derive weak and strong duality theorems for a general fuzzy conic programming. Toward this end, The convexity-like concept of fuzzy mappings is introduced and then a specific ordering cone is established based on the parameterized representation of fuzzy numbers. Under this setting, duality theo...

متن کامل

An Efficient Algorithm for Reducing the Duality Gap in a Special Class of the Knapsack Problem

A special class of the knapsack problem is called the separable nonlinear knapsack problem. This problem has received considerable attention recently because of its numerous applications. Dynamic programming is one of the basic approaches for solving this problem. Unfortunately, the size of state-pace will dramatically increase and cause the dimensionality problem. In this paper, an efficient a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:
  • SIAM J. Control and Optimization

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2009